

EKumi: an extensible workflow management system

EKumi is a workflow management system licensed under the Eclipse Public License 2.0 [https://www.eclipse.org/legal/epl-2.0/].

EKumi allows to automate the execution of a chain of tasks. Its bigger strength is its extensibility as it allows anyone to provide and share new:

	workflow editors,

	scripting languages,

	datatypes.

Please follow Getting Started chapters to learn how to create and execute a workflow using EKumi’s built-in features.

Table of Contents

Getting Started

	Main Concepts

	Install EKumi
	On top of an existing Eclipse IDE installation

	As a standalone product

	Create a new Workflow project
	Use the New Workflow Project wizard

	Enable scripting languages

	Choose a representation

	Create the project

	Design an activity
	Open the diagram editor

	Understand the diagram editor

	Create a Greeting task

	Execute an activity
	Link the task to the start node

	Launch the execution

	Good Practices
	Use meaningful names

Available Representations

	EKumi Default Representation
	A BPMN-inspired editor

	Use Cases

	Features

	Impacts on project

	Understand the diagram editor

	Create a new task

	Link two tasks

	Launch an activity

Available Scripting Languages

	Java
	Impacts on project

	Script implementation

	Dependency Injection

Extend EKumi

	Add a new Scripting Language
	What is a scripting language?

	How to add a new scripting language?

	How to use the new scripting language within the workflow diagram editor?

	Add a new Data Type
	What is a data type?

	How to add a new datatype?

	How to use the new datatype within the workflow diagram editor?

	Add a new Specification
	What is a specification?

	How to add a new specification?

	How to integrate the new specification within the IDE?

	Add a new Representation
	What is a representation?

	How to add a new representation?

	How to integrate the new representation within the IDE?

	Share an Activity

Main Concepts

The following glossary sums up EKumi’s main concepts and define the terms used throughout this documentation.

	Task

	A single unit of work. A task takes inputs, performs some operation and then produces outputs.
A task may neither take any input nor produce any output.

	Activity

	A collection of tasks, which is also considered as a task. The terms “workflow” and “activity” are equivalent.

	Input

	A typed value that is given to a task before it is executed.

	Output

	A typed value that is produced by the execution of a task.

	Datatype

	A type that determines the values that can be associated to an input or an output.

Install EKumi

Todo

No download available at the moment, please wait for the first release.

EKumi can be installed in to different ways:

	either on the top of an existing Eclipse IDE installation

	or as a standalone product.

Depending on your needs you may choose one or the other.

On top of an existing Eclipse IDE installation

EKumi can be installed as a set of plug-ins directly within Eclipse IDE.

To this end, open the IDE, click on Help > Install new software... then paste the following URL in the dialog:

	<URL not available yet>

Check the following features:

	EKumi IDE Integration

	EKumi IDE UI Integration

	EKumi Java Scripting Language

Click on Finish, accept the licenses then Finish.

Wait for the installation to end then restart the IDE.

As a standalone product

To use EKumi as a standalone product you have to download the archive corresponding to your OS at the following address:

	<URL not available yet>

You can then decompress it, and run the ekumi executable.

You are now ready to create a first workflow project.

Create a new Workflow project

Use the New Workflow Project wizard

The simplest way to create a new Workflow project is to use the dedicated wizard. It can be opened from File > New... > Workflow Project.

The wizard first asks for the name of the new project. Fill in the text field then press Next.

[image: wizard's first page allows to customize the project]
The second page asks the user to choose:

	the name of the workflow (which, by default, is the same as the name of the project),

	the scripting languages enabled for this workflow,

	the representation.

[image: wizard's second page allows to customize the workflow]

Enable scripting languages

Scripting languages are used to specify the behaviour of a task at runtime. A scripting language is typically kind of an interpreter able to execute a script associated with a task.

Tip

See Available Scripting Languages for an overview of available scripting languages.

Several scripting languages can be selected at once for a project. In the context of this tutorial just select Java; if Java is not available, please see Install EKumi.

Important

It is currently impossible to enable new scripting languages in an existing project. Take care to the languages you select during the creation of the projects.

Choose a representation

A representation defines the way an activity can be seen. A representation is usually associated with an editor providing tools to modify the activity.

These editors can take any shape: it can be a diagram editor, a textual DSL or even a GUI with text fields and buttons. It is important to pick a representation which is relevant to your goal because it will define the way you design the activity.

Tip

See Available Representations for an overview of available representations.

Currently only one representation is allowed per project. Select EKumi Default Representation.

Create the project

When the setup is done, click on Finish. Wait a few seconds to see the project being added to the Explorer.

[image: the new project is added to the workspace]

Tip

See the Java and EKumi Default Representation for a detailed presentation of the project’s content.

You are now ready to design your first activity.

Design an activity

Open the diagram editor

In order to open the diagram editor:

	Unfold the representations.aird file

	Double-click on Example workflow diagram

The following view should open:

[image: Workflow diagram editor]

Understand the diagram editor

The workflow diagram editor is made of two parts:

	the edition area, which is the blank area on the left,

	the palette, which is the section on the right.

The edition area provides a visual representation of the workflow. Tools can be applied on it in order to modify the representation.

The circle represents the start node, which is the entry point of the workflow when it is executed.

The palette provides access to the different tools that can be used to modify the workflow. A tool can be used by:

	Clicking on the tool in the palette

	Clicking on the edition area

Tip

See EKumi Default Representation for an in-depth presentation of available tools.

Create a Greeting task

A new Task can be created thanks to the [image: external-task-tool] tool:

	Click on the tool

	Click somewhere in the edition area

A new box appears on the editor, representing the new task.

Open the Properties view, select the task, then type “Greet” in the Name text field.

In order to add behavior to this task we have to link it to a Java script. To this end:

	Select Java in the Languages drop-down menu

	Type “project;<the_name_of_your_project>;example.Greet” in the Script Id text field

[image: the Properties view allows to change Greet's properties]

Note

The Script Id fields allows EKumi to resolve the script to run. The UI will evolve in the future so that users won’t have to type it by hand anymore.

Then create a new Java class called Greet in the example package that prints something to the console.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 package example;

 import fr.kazejiyu.ekumi.core.workflow.Context;
 import fr.kazejiyu.ekumi.core.workflow.gen.impl.RunnerImpl;

 public class Greet extends RunnerImpl {

 @Override
 public void run(Context context) {
 System.out.println("Hello!");
 }

 }

Todo

Build a more complex activity with two tasks, one producing outputs and another consuming them.

Now that the activity is ready, it can be executed.

Execute an activity

Link the task to the start node

First of all, the Greet task must be linked to the start node, otherwise it won’t be considered as a runnable task.

To this end, use the [image: precede-tool] tool:

	Click on the tool

	Click on the start node

	Click on the task

Launch the execution

Then you can create a new Run configuration:

	Run > Run Configurations...

	Double-click on Workflow

	Click on Browse

	Select model/Example.eds

	Click on Run

Hello! should be printed to the console.

Good Practices

Use meaningful names

When naming a task it is important to use a clear and easy to understand name.

Since tasks represent computations, it is relevant to use verbs to name them. For instance:

	Compute X

	Merge data

	Write to file

When a task is only used to extract data, naming it after the name of the data can make its purpose clearer. For instance, a task used to compute the length of a String may be called Length.

Exceptions are tasks representing mathematical operations. In such cases it may be clearer to use the mathematical expression as name:

	a + b

	y = f(x) + 2b

EKumi Default Representation

Important

Section under construction

A BPMN-inspired editor

This is the default built-in representation of an activity. It provides a BPMN-inspired diagram workflow editor.

Use Cases

This representation should be used when a graphical representation makes easier to design an activity.

Features

This representation allows anyone to:

	Design an activity made of multiple tasks,

	Add inputs and outputs to a task,

	Associate a script to a task,

	Specify that several tasks must be executed concurrently.

Impacts on project

When this representation is chosen for a project, it creates the following files:

	File

	Purpose

	representations.aird

	Describes the workflow diagram.

	model/<activity-name>.eds

	Describes the activity, defining the different tasks it is made of.

It also adds the Modeling nature to the project.

Understand the diagram editor

[image: Workflow diagram editor]
The workflow diagram editor is made of two parts:

	the edition area, which is the blank area on the left,

	the palette, which is the section on the right.

The edition area provides a visual representation of the workflow. Tools can be applied on it in order to modify the representation. The circle represents the start node, which is the entry point of the workflow when it is executed.

The palette provides access to the different tools that can be used to modify the workflow. A tool can be used by:

	Clicking on the tool in the palette

	Clicking on the edition area

Available tools are described in the following chapters.

Create a new task

A new Task can be created thanks to the [image: external-task-tool] tool.

Link two tasks

Two task can be linked in order to specify which one should be executed first. This can be achieved thanks to the [image: precede-tool].

Launch an activity

Once the activity is ready, it can be executed. An execution can be launched in two ways.

Create a dedicated launch configuration

	Run > Run Configurations...

	Double-click on Workflow

	Click on Browse

	Select the .eds file located under the model/ folder

	Click on Run

Use the context menu shortcut

In the file explorer:

	Right-click on the .eds file located under the model/ folder

	Select Run As > EKumi Activity

Java

Important

Section under construction

Currently, Java is the only available scripting language. It allows to specify the behaviour of tasks by writting Java scripts. Each script is a class that extends the RunnerImpl class.

Impacts on project

When Java is enabled on a Workflow Project, it creates the following files:

	File

	Purpose

	src/

	Directory containing Java source files.

	META-INF/MANIFEST.MF

	Defines project’s dependencies, including EKumi’s API.

	build.properties

	Defines the files to include when the project is packaged as a binary.

The Java and Plugin natures are also added to the project. That enables the Java builder to compile the sources and allows the dependencies toward EKumi API to be resolved.

Script implementation

A new script can be added to a task by specifying the class’ canonical name as script id. The class must extend the RunnerImpl class as in the example below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 /**
 * A script that prints 'Hello' when the corresponding task is executed.
 */
 public class SayHello extends RunnerImpl {

 @Override
 public void run(Context context) {
 System.out.println("Hello!");
 }

 }

Dependency Injection

Java scripts can be injected with some environment objects. Currently two objects can be injected:

	Events: allows to send specific events and to register new listener

	ExecutionStatus: allows to check the current status of the execution (failed, cancelled, etc.)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 /**
 * A script that waits until the execution is cancelled.
 */
 public class WaitCancellation extends RunnerImpl {

 @Inject
 private final ExecutionStatus execution;

 @Override
 public void run(Context context) {
 while (! execution.isCancelled()) {
 // wait
 }
 }

 }

Add a new Scripting Language

Important

This section requires some knowledge about Eclipse Extension Points [https://www.vogella.com/tutorials/EclipseExtensionPoint/article.html].

What is a scripting language?

A scripting language is a language that can be used to specify the behaviour of a task. Concretely, a language is a parser that can:

	Instantiate an Activity from a given String

	Create a String from an existing Activity.

It is hence responsible of serializing and deserializing Activities so that they can both be persisted and executed.

How to add a new scripting language?

A new one can be defined by contributing to the fr.kazejiyu.ekumi.core.languages extension point.

It requires one class that implements the ScriptingLanguage interface.

The interface is defined as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	 public interface ScriptingLanguage {

 /**
 * Returns a unique id identifying the language.
 * @return a unique id identifying the language
 */
 String id();

 /**
 * Returns a human-readable name of the language.
 * @return a human-readable name of the language
 */
 String name();

 /**
 * Turns a runner written with the language into a EKumi {@link Runner}.
 *
 * @param identifier
 * Uniquely identifies the runner to resolve.
 * Must not be {@code null}.
 * @param context
 * The context of the {@link Execution}. Can be null if the execution
 * does not provide any context, or if the Runner is not resolved in
 * the context of an execution.
 *
 * @return a runner that can be handled by EKumi.
 *
 * @throws ScriptLoadingFailureException if the script cannot be loaded.
 * @throws IllegalScriptIdentifierException if the given identifier is not properly formatted.
 */
 Runner resolveRunner(String identifier, Context context);
 }

How to use the new scripting language within the workflow diagram editor?

Important

Feature not implemented yet.

Add a new Data Type

Important

This section requires some knowledge about Eclipse Extension Points [https://www.vogella.com/tutorials/EclipseExtensionPoint/article.html].

What is a data type?

A data type is a language that can be used to specify the format of a data. The term data represents both inputs and outputs. Concretely, a datatype is a parser that can:

	Instantiate an Object from a given String

	Create a String from an existing Object.

It is hence responsible of serializing and deserializing data so that they can both be persisted and used during the execution.

How to add a new datatype?

A new one can be defined by contributing to the fr.kazejiyu.ekumi.core.datatypes extension point.

It requires one class that implements the DataType<T> interface.

The interface is defined as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

	 public interface DataType<T> {

 /**
 * Returns an identifier for this type.
 * @return an identifier for this type.
 */
 String getId();

 /**
 * Returns the name of the type.
 * @return the name of the type.
 */
 String getName();

 /**
 * Returns the Java class corresponding to this type.
 * @return the Java class corresponding to this type.
 */
 Class<T> getJavaClass();

 /**
 * Returns the default value of a new instance of this type.
 * @return the default value of a new instance of this type.
 */
 T getDefaultValue();

 /**
 * Returns a String representation of the type.

 *

 * For any type {@code type}, the following assertion must be {@code true}:
 * <pre>{@code instance.equals(type.unserialize(type.serialize(instance)));}</pre>
 *
 * @return a String representation of the type.
 *
 * @throws DataTypeSerializationException if T cannot be turned into a String
 *
 * @see #unserialize(String)
 */
 String serialize(T instance);

 /**
 * Returns a new instance of the type from a given representation.

 *

 * For any type {@code type}, the following assertion must be {@code true}:
 * <pre>{@code instance.equals(type.unserialize(type.serialize(instance)));}</pre>
 *
 * @param representation
 * The string representation of the type.
 *
 * @throws DataTypeUnserializationException if representation cannot be turned into an instance of T
 *
 * @see #serialize()
 */
 T unserialize(String representation);
 }

How to use the new datatype within the workflow diagram editor?

Important

Feature not implemented yet.

Add a new Specification

Important

This section requires some knowledge about Eclipse Extension Points [https://www.vogella.com/tutorials/EclipseExtensionPoint/article.html].

What is a specification?

A specification is a definition of how a workflow is structured; as such, it can be affiliated to a concrete grammar.

A specification can be used to customize the way workflows are persisted, but are mainly aimed at supporting new editors (see Add a new Representation).

How to add a new specification?

A new one can be defined by contributing to the fr.kazejiyu.ekumi.core.specs extension point which requires one class that implements the ActivityAdapter interface.

The interface to implement is defined as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	 public interface ActivityAdapter {

 /**
 * Returns whether the adapter can turn the given specification into an Activity.
 *
 * @param specification
 * The specification to adapt, may be null.
 *
 * @return whether the adapter can turn the given specification into an Activity
 */
 boolean canAdapt(Object specification);

 /**
 * Creates an Activity from the given specification.
 *
 * @param specification
 * The specification to adapt.
 * @param datatypes
 * The factory used to instantiate available datatypes.
 * @param languages
 * The factory used to instantiate available scripting languages.
 *
 * @return a new Activity
 */
 Optional<Activity> adapt(Object specification, DataTypeFactory datatypes, ScriptingLanguageFactory languages);

 }

An ActivityAdapter is responsible of turning your own specification model into an Activity so that the framework can execute it.

How to integrate the new specification within the IDE?

Important

Feature not implemented yet.

Add a new Representation

Important

This section requires some knowledge about Eclipse Extension Points [https://www.vogella.com/tutorials/EclipseExtensionPoint/article.html].

What is a representation?

A specification describes a possible representation of a workflow. The main purposes of represenations is allowing new workflow editors (which can visual, textual or even in-memory).

How to add a new representation?

A new one can be defined by contributing to the fr.kazejiyu.ekumi.ide.project_customization extension point.

It requires a contribution to the representations attribute.

How to integrate the new representation within the IDE?

The representation is automatically proposed to the user in the New Workflow Project wizard as soon as the new extension is completed.

Share an Activity

Important

This section requires some knowledge about Eclipse Extension Points [https://www.vogella.com/tutorials/EclipseExtensionPoint/article.html].

Todo

Explain usage of the categories extension point.

Index

 _static/ajax-loader.gif

_images/workflow_diagram_editor.png
& Bample workflow diagram 03

Br@i-lelO-w-lmeta-| @@l]

& Btemal Task
4+ Create nput
4 Create Output
& Relotionships %
N\ Precede

& AND @
G Pt

_images/workflow_diagram_editor1.png
& Bample workflow diagram 03

Br@i-lelO-w-lmeta-| @@l]

& Btemal Task
4+ Create nput
4 Create Output
& Relotionships %
N\ Precede

& AND @
G Pt

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/new_workflow_wizard_second_page.png
New Workflow
Set up project's workflow

Workfow name: Barple

Which languages will be used?

Please choose a representation:

EKurni Default Representation (A BBMN-inspired workflow diagram editor) |

_images/precede_tool.png
\ Precede

_images/new_workflow_wizard_first_page.png
New Workflow Project
Create a new Workflow project.

Brject nome: [Bompid

Use defautt location

Ci\Progs\IDE\eclipse-modeling-2018-12\runtime-N| | Browse.

® <Bock = o=l

_images/new_workflow_wizard_new_project.png
v & Bample
> A Project Dependencies
B Plug-in Dependencies
S i JRE System Library [avsSE-1.2]
> B sic
> & META-INF
v (& model
5 & Eamplecds
buildproperties
v 13 representationsaird
v & EKumi Workflow
v & Workflow Disgram
& Example workflow diagram

_images/precede_tool1.png
\ Precede

_static/file.png

nav.xhtml

 Table of Contents

 		
 EKumi: an extensible workflow management system

 		
 Main Concepts

 		
 Install EKumi

 		
 On top of an existing Eclipse IDE installation

 		
 As a standalone product

 		
 Create a new Workflow project

 		
 Use the New Workflow Project wizard

 		
 Enable scripting languages

 		
 Choose a representation

 		
 Create the project

 		
 Design an activity

 		
 Open the diagram editor

 		
 Understand the diagram editor

 		
 Create a Greeting task

 		
 Execute an activity

 		
 Link the task to the start node

 		
 Launch the execution

 		
 Good Practices

 		
 Use meaningful names

 		
 EKumi Default Representation

 		
 A BPMN-inspired editor

 		
 Use Cases

 		
 Features

 		
 Impacts on project

 		
 Understand the diagram editor

 		
 Create a new task

 		
 Link two tasks

 		
 Launch an activity

 		
 Create a dedicated launch configuration

 		
 Use the context menu shortcut

 		
 Java

 		
 Impacts on project

 		
 Script implementation

 		
 Dependency Injection

 		
 Add a new Scripting Language

 		
 What is a scripting language?

 		
 How to add a new scripting language?

 		
 How to use the new scripting language within the workflow diagram editor?

 		
 Add a new Data Type

 		
 What is a data type?

 		
 How to add a new datatype?

 		
 How to use the new datatype within the workflow diagram editor?

 		
 Add a new Specification

 		
 What is a specification?

 		
 How to add a new specification?

 		
 How to integrate the new specification within the IDE?

 		
 Add a new Representation

 		
 What is a representation?

 		
 How to add a new representation?

 		
 How to integrate the new representation within the IDE?

 		
 Share an Activity

_images/external_task_tool1.png
&, External Task

_images/greet_properties.png
[Properties 52 | M v=0

<+ External Task Greet

L

 Greet

Nome @ [Greet

dentity
Linputs |
[Outputy)

~ Behaviour

Longuage)
Sciptld @ projectbamplesamplereel

_static/up-pressed.png

_static/minus.png

_images/external_task_tool.png
&, External Task

_static/plus.png

_static/up.png

