
EKumi Documentation

Emmanuel CHEBBI

Feb 08, 2020

Getting Started

1 Table of Contents 3
1.1 Main Concepts . 3
1.2 Install EKumi . 3
1.3 Create a new Workflow project . 4
1.4 Design an activity . 7
1.5 Execute an activity . 10
1.6 Good Practices . 10
1.7 EKumi Default Representation . 11
1.8 Java . 13
1.9 Monitor Executions . 14
1.10 Add a new Scripting Language . 16
1.11 Add a new Data Type . 17
1.12 Add a new Specification . 19
1.13 Add a new Representation . 20
1.14 Share an Activity . 21
1.15 Build a workflow . 21
1.16 Execute a Workflow . 26

i

ii

EKumi Documentation

EKumi is a workflow management system licensed under the Eclipse Public License 2.0.

EKumi allows to automate the execution of chains of tasks. Its bigger strength is its extensibility as it allows anyone
to provide and share new:

• workflow editors,

• scripting languages,

• datatypes,

• execution hooks.

Please follow Getting Started chapters to learn how to create and execute a workflow using EKumi’s built-in features.

Getting Started 1

https://www.eclipse.org/legal/epl-2.0/

EKumi Documentation

2 Getting Started

CHAPTER 1

Table of Contents

1.1 Main Concepts

The following glossary sums up EKumi’s main concepts and define the terms used throughout this documentation.

Task A single unit of work. A task takes inputs, performs some operation and then produces outputs. A task may
neither take any input nor produce any output.

Activity A collection of tasks, which is also considered as a task. The terms “workflow” and “activity” are equivalent.

Input A typed value that is given to a task before it is executed.

Output A typed value that is produced by the execution of a task.

Datatype A type that determines the values that can be associated to an input or an output.

1.2 Install EKumi

Todo: No download available at the moment, please wait for the first release.

EKumi can be installed in to different ways:

• either on the top of an existing Eclipse IDE installation

• or as a standalone product.

Depending on your needs you may choose one or the other.

1.2.1 On top of an existing Eclipse IDE installation

EKumi can be installed as a set of plug-ins directly within Eclipse IDE.

3

EKumi Documentation

To this end, open the IDE, click on Help > Install new software... then paste the following URL in the
dialog:

• <URL not available yet>

Check the following features:

• EKumi IDE Integration

• EKumi IDE UI Integration

• EKumi Java Scripting Language

Click on Finish, accept the licenses then Finish.

Wait for the installation to end then restart the IDE.

1.2.2 As a standalone product

To use EKumi as a standalone product you have to download the archive corresponding to your OS at the following
address:

• <URL not available yet>

You can then decompress it, and run the ekumi executable.

You are now ready to create a first workflow project.

1.3 Create a new Workflow project

1.3.1 Use the New Workflow Project wizard

The simplest way to create a new Workflow project is to use the dedicated wizard. It can be opened from File >
New... > Workflow Project.

The wizard first asks for the name of the new project. Fill in the text field then press Next.

4 Chapter 1. Table of Contents

EKumi Documentation

The second page asks the user to choose:

• the name of the workflow (which, by default, is the same as the name of the project),

• the scripting languages enabled for this workflow,

• the representation.

1.3. Create a new Workflow project 5

EKumi Documentation

1.3.2 Enable scripting languages

Scripting languages are used to specify the behaviour of a task at runtime. A scripting language is typically kind of an
interpreter able to execute a script associated with a task.

Tip: See Available Scripting Languages for an overview of available scripting languages.

Several scripting languages can be selected at once for a project. In the context of this tutorial just select Java; if Java
is not available, please see Install EKumi.

Important: It is currently impossible to enable new scripting languages in an existing project. Take care to the
languages you select during the creation of the projects.

1.3.3 Choose a representation

A representation defines the way an activity can be seen. A representation is usually associated with an editor providing
tools to modify the activity.

6 Chapter 1. Table of Contents

EKumi Documentation

These editors can take any shape: it can be a diagram editor, a textual DSL or even a GUI with text fields and buttons.
It is important to pick a representation which is relevant to your goal because it will define the way you design the
activity.

Tip: See Available Representations for an overview of available representations.

Currently only one representation is allowed per project. Select EKumi Default Representation.

1.3.4 Create the project

When the setup is done, click on Finish. Wait a few seconds to see the project being added to the Explorer.

Tip: See the Java and EKumi Default Representation for a detailed presentation of the project’s content.

You are now ready to design your first activity.

1.4 Design an activity

1.4.1 Open the diagram editor

In order to open the diagram editor:

1. Unfold the representations.aird file

2. Double-click on Example workflow diagram

The following view should open:

1.4. Design an activity 7

EKumi Documentation

1.4.2 Understand the diagram editor

The workflow diagram editor is made of two parts:

• the edition area, which is the blank area on the left,

• the palette, which is the section on the right.

The edition area provides a visual representation of the workflow. Tools can be applied on it in order to modify the
representation.

The circle represents the start node, which is the entry point of the workflow when it is executed.

The palette provides access to the different tools that can be used to modify the workflow. A tool can be used by:

1. Clicking on the tool in the palette

2. Clicking on the edition area

Tip: See EKumi Default Representation for an in-depth presentation of available tools.

1.4.3 Create a Greeting task

A new Task can be created thanks to the tool:

8 Chapter 1. Table of Contents

EKumi Documentation

1. Click on the tool

2. Click somewhere in the edition area

A new box appears on the editor, representing the new task.

Open the Properties view, select the task, then type “Greet” in the Name text field.

In order to add behavior to this task we have to link it to a Java script. To this end:

1. Select Java in the Languages drop-down menu

2. Type “project;<the_name_of_your_project>;example.Greet” in the Script Id text field

Note: The Script Id fields allows EKumi to resolve the script to run. The UI will evolve in the future so that users
won’t have to type it by hand anymore.

Then create a new Java class called Greet in the example package that prints something to the console.

1 package example;
2

3 import fr.kazejiyu.ekumi.core.workflow.Context;
4 import fr.kazejiyu.ekumi.core.workflow.gen.impl.RunnerImpl;
5

6 public class Greet extends RunnerImpl {
7

8 @Override
9 public void run(Context context) {

10 System.out.println("Hello!");
11 }
12

13 }

Todo: Build a more complex activity with two tasks, one producing outputs and another consuming them.

Now that the activity is ready, it can be executed.

1.4. Design an activity 9

EKumi Documentation

1.5 Execute an activity

1.5.1 Link the task to the start node

First of all, the Greet task must be linked to the start node, otherwise it won’t be considered as a runnable task.

To this end, use the tool:

1. Click on the tool

2. Click on the start node

3. Click on the task

1.5.2 Launch the execution

Then you can create a new Run configuration:

1. Run > Run Configurations...

2. Double-click on Workflow

3. Click on Browse

4. Select model/Example.eds

5. Click on Run

Hello! should be printed to the console.

1.6 Good Practices

1.6.1 Use meaningful names

When naming a task it is important to use a clear and easy to understand name.

Since tasks represent computations, it is relevant to use verbs to name them. For instance:

• Compute X

• Merge data

• Write to file

When a task is only used to extract data, naming it after the name of the data can make its purpose clearer. For instance,
a task used to compute the length of a String may be called Length.

Exceptions are tasks representing mathematical operations. In such cases it may be clearer to use the mathematical
expression as name:

• a + b

• y = f(x) + 2b

10 Chapter 1. Table of Contents

EKumi Documentation

1.7 EKumi Default Representation

Important: Section under construction

1.7.1 A BPMN-inspired editor

This is the default built-in representation of an activity. It provides a BPMN-inspired diagram workflow editor.

1.7.2 Use Cases

This representation should be used when a graphical representation makes easier to design an activity.

1.7.3 Features

This representation allows anyone to:

• Design an activity made of multiple tasks,

• Add inputs and outputs to a task,

• Associate a script to a task,

• Specify that several tasks must be executed concurrently.

1.7.4 Impacts on project

When this representation is chosen for a project, it creates the following files:

File Purpose
representations.aird Describes the workflow diagram.
model/<activity-name>.eds Describes the activity, defining the different tasks it is made of.

It also adds the Modeling nature to the project.

1.7. EKumi Default Representation 11

EKumi Documentation

1.7.5 Understand the diagram editor

The workflow diagram editor is made of two parts:

• the edition area, which is the blank area on the left,

• the palette, which is the section on the right.

The edition area provides a visual representation of the workflow. Tools can be applied on it in order to modify the
representation. The circle represents the start node, which is the entry point of the workflow when it is executed.

The palette provides access to the different tools that can be used to modify the workflow. A tool can be used by:

1. Clicking on the tool in the palette

2. Clicking on the edition area

Available tools are described in the following chapters.

1.7.6 Create a new task

A new Task can be created thanks to the tool.

12 Chapter 1. Table of Contents

EKumi Documentation

1.7.7 Link two tasks

Two task can be linked in order to specify which one should be executed first. This can be achieved thanks to the

.

1.7.8 Launch an activity

Once the activity is ready, it can be executed. An execution can be launched in two ways.

Create a dedicated launch configuration

1. Run > Run Configurations...

2. Double-click on Workflow

3. Click on Browse

4. Select the .eds file located under the model/ folder

5. Click on Run

Use the context menu shortcut

In the file explorer:

1. Right-click on the .eds file located under the model/ folder

2. Select Run As > EKumi Activity

1.8 Java

Important: Section under construction

Currently, Java is the only available scripting language. It allows to specify the behaviour of tasks by writting Java
scripts. Each script is a class that extends the RunnerImpl class.

1.8.1 Impacts on project

When Java is enabled on a Workflow Project, it creates the following files:

File Purpose
src/ Directory containing Java source files.
META-INF/MANIFEST.MF Defines project’s dependencies, including EKumi’s API.
build.properties Defines the files to include when the project is packaged as a binary.

The Java and Plugin natures are also added to the project. That enables the Java builder to compile the sources
and allows the dependencies toward EKumi API to be resolved.

1.8. Java 13

EKumi Documentation

1.8.2 Script implementation

A new script can be added to a task by specifying the class’ canonical name as script id. The class must extend the
RunnerImpl class as in the example below:

1 /**
2 * A script that prints 'Hello' when the corresponding task is executed.
3 */
4 public class SayHello extends RunnerImpl {
5

6 @Override
7 public void run(Context context) {
8 System.out.println("Hello!");
9 }

10

11 }

1.8.3 Dependency Injection

Java scripts can be injected with some environment objects. Currently two objects can be injected:

• Events: allows to send specific events and to register new listener

• ExecutionStatus: allows to check the current status of the execution (failed, cancelled, etc.)

1 /**
2 * A script that waits until the execution is cancelled.
3 */
4 public class WaitCancellation extends RunnerImpl {
5

6 @Inject
7 private final ExecutionStatus execution;
8

9 @Override
10 public void run(Context context) {
11 while (! execution.isCancelled()) {
12 // wait
13 }
14 }
15

16 }

1.9 Monitor Executions

Important: This section requires some knowledge about Eclipse Extension Points.

1.9.1 Why monitoring executions?

Monitoring executions allows developers to enhance the execution engine or to connect it to other tools. For instance,
one could monitor executions in order to:

• show ongoing executions in an online dashboard,

14 Chapter 1. Table of Contents

https://www.vogella.com/tutorials/EclipseExtensionPoint/article.html

EKumi Documentation

• notify user by e-mail or Slack when an execution fails,

• update a database with the result of the execution.

Executions can be monitored by registering execution hooks.

1.9.2 How to register a new execution hook?

An execution hook can be registered by contributing a new hook element to the fr.kazejiyu.ekumi.core.
execution extension point.

This element needs the following attributes:

Attributes Purpose
id Uniquely identifies the hook
class An instance of the ExecutionHook interface
name Human-readable name displayed in UI
description Details of what the hook does, displayed in UI
activated by default (Optional) Indicates whether the hook should be notified by default

When the user executes an activity, he can select the hooks that should be notified. The activated by default
attribute indicates whether the hook is selected by default. The following screenshot shows the Run Configuration tab
that allows the user to select available hooks:

1.9.3 How to implement a new execution hook?

A new hook is implemented by creating a class that implements the ExecutionHook interface. This interface
provides a lot of methods to react on specific events but their default behavior is to do nothing so you can only override
the ones you are interested in.

The following class defines a hook that prints messages when an execution starts, ends, and when an activity fails:

1 import fr.kazejiyu.ekumi.core.execution.listeners.ExecutionHook;
2 import fr.kazejiyu.ekumi.core.workflow.Activity;
3 import fr.kazejiyu.ekumi.core.workflow.Execution;
4

5 public class PrintsExecutionStepsToConsole implements ExecutionHook {
6

7 @Override
8 public String id() {
9 // Must be equal to the id specified in the plugin.xml file

(continues on next page)

1.9. Monitor Executions 15

EKumi Documentation

(continued from previous page)

10 return "fr.kazejiyu.ekumi.ide.hooks.example1";
11 }
12

13 @Override
14 public void onExecutionStarted(Execution execution) {
15 System.out.println("The execution " + execution.name() + " has started on "

→˓+ execution.startDate());
16 }
17

18 @Override
19 public void onExecutionSucceeded(Execution succeeded) {
20 System.out.println("The execution " + succeeded.name() + " has finished

→˓successfully on " + succeeded.endDate());
21 }
22

23 @Override
24 public void onActivityFailed(Activity failed) {
25 System.out.println("The activity " + failed.name() + " has failed");
26 }
27

28 }

1.10 Add a new Scripting Language

Important: This section requires some knowledge about Eclipse Extension Points.

1.10.1 What is a scripting language?

A scripting language is a language that can be used to specify the behaviour of a task. Concretely, a language is a
parser that can:

1. Instantiate an Activity from a given String

2. Create a String from an existing Activity.

It is hence responsible of serializing and deserializing Activities so that they can both be persisted and executed.

1.10.2 How to add a new scripting language?

A new one can be defined by contributing to the fr.kazejiyu.ekumi.core.languages extension point.

It requires one class that implements the ScriptingLanguage interface.

The interface is defined as follows:

1 public interface ScriptingLanguage {
2

3 /**
4 * Returns a unique id identifying the language.
5 * @return a unique id identifying the language
6 */

(continues on next page)

16 Chapter 1. Table of Contents

https://www.vogella.com/tutorials/EclipseExtensionPoint/article.html

EKumi Documentation

(continued from previous page)

7 String id();
8

9 /**
10 * Returns a human-readable name of the language.
11 * @return a human-readable name of the language
12 */
13 String name();
14

15 /**
16 * Turns a runner written with the language into a EKumi {@link Runner}.
17 *
18 * @param identifier
19 * Uniquely identifies the runner to resolve.
20 * Must not be {@code null}.
21 * @param context
22 * The context of the {@link Execution}. Can be null if the

→˓execution
23 * does not provide any context, or if the Runner is not

→˓resolved in
24 * the context of an execution.
25 *
26 * @return a runner that can be handled by EKumi.
27 *
28 * @throws ScriptLoadingFailureException if the script cannot be loaded.
29 * @throws IllegalScriptIdentifierException if the given identifier is not

→˓properly formatted.
30 */
31 Runner resolveRunner(String identifier, Context context);
32 }

1.10.3 How to use the new scripting language within the workflow diagram editor?

Important: Feature not implemented yet.

1.11 Add a new Data Type

Important: This section requires some knowledge about Eclipse Extension Points.

1.11.1 What is a data type?

A data type is a language that can be used to specify the format of a data. The term data represents both inputs and
outputs. Concretely, a datatype is a parser that can:

1. Instantiate an Object from a given String

2. Create a String from an existing Object.

It is hence responsible of serializing and deserializing data so that they can both be persisted and used during the
execution.

1.11. Add a new Data Type 17

https://www.vogella.com/tutorials/EclipseExtensionPoint/article.html

EKumi Documentation

1.11.2 How to add a new datatype?

A new one can be defined by contributing to the fr.kazejiyu.ekumi.core.datatypes extension point.

It requires one class that implements the DataType<T> interface.

The interface is defined as follows:

1 public interface DataType<T> {
2

3 /**
4 * Returns an identifier for this type.
5 * @return an identifier for this type.
6 */
7 String getId();
8

9 /**
10 * Returns the name of the type.
11 * @return the name of the type.
12 */
13 String getName();
14

15 /**
16 * Returns the Java class corresponding to this type.
17 * @return the Java class corresponding to this type.
18 */
19 Class<T> getJavaClass();
20

21 /**
22 * Returns the default value of a new instance of this type.
23 * @return the default value of a new instance of this type.
24 */
25 T getDefaultValue();
26

27 /**
28 * Returns a String representation of the type.

29 *

30 * For any type {@code type}, the following assertion must be {@code true}:
31 * <pre>{@code instance.equals(type.unserialize(type.serialize(instance)));}</

→˓pre>
32 *
33 * @return a String representation of the type.
34 *
35 * @throws DataTypeSerializationException if T cannot be turned into a String
36 *
37 * @see #unserialize(String)
38 */
39 String serialize(T instance);
40

41 /**
42 * Returns a new instance of the type from a given representation.

43 *

44 * For any type {@code type}, the following assertion must be {@code true}:
45 * <pre>{@code instance.equals(type.unserialize(type.serialize(instance)));}</

→˓pre>
46 *
47 * @param representation
48 * The string representation of the type.
49 *

(continues on next page)

18 Chapter 1. Table of Contents

EKumi Documentation

(continued from previous page)

50 * @throws DataTypeUnserializationException if representation cannot be turned
→˓into an instance of T

51 *
52 * @see #serialize()
53 */
54 T unserialize(String representation);
55 }

1.11.3 How to use the new datatype within the workflow diagram editor?

Important: Feature not implemented yet.

1.12 Add a new Specification

Important: This section requires some knowledge about Eclipse Extension Points.

1.12.1 What is a specification?

A specification is a definition of how a workflow is structured; as such, it can be affiliated to a concrete grammar.

A specification can be used to customize the way workflows are persisted, but are mainly aimed at supporting new
editors (see Add a new Representation).

1.12.2 How to add a new specification?

A new one can be defined by contributing to the fr.kazejiyu.ekumi.core.specs extension point which
requires one class that implements the ActivityAdapter interface.

The interface to implement is defined as follows:

1 public interface ActivityAdapter {
2

3 /**
4 * Returns whether the adapter can turn the given specification into an Activity.
5 *
6 * @param specification
7 * The specification to adapt, may be null.
8 *
9 * @return whether the adapter can turn the given specification into an Activity

10 */
11 boolean canAdapt(Object specification);
12

13 /**
14 * Creates an Activity from the given specification.
15 *
16 * @param specification

(continues on next page)

1.12. Add a new Specification 19

https://www.vogella.com/tutorials/EclipseExtensionPoint/article.html

EKumi Documentation

(continued from previous page)

17 * The specification to adapt.
18 * @param datatypes
19 * The factory used to instantiate available datatypes.
20 * @param languages
21 * The factory used to instantiate available scripting

→˓languages.
22 *
23 * @return a new Activity
24 */
25 Optional<Activity> adapt(Object specification, DataTypeFactory datatypes,

→˓ScriptingLanguageFactory languages);
26

27 }

An ActivityAdapter is responsible of turning your own specification model into an Activity so that the
framework can execute it.

1.12.3 How to integrate the new specification within the IDE?

Important: Feature not implemented yet.

1.13 Add a new Representation

Important: This section requires some knowledge about Eclipse Extension Points.

1.13.1 What is a representation?

A specification describes a possible representation of a workflow. The main purposes of represenations is allowing
new workflow editors (which can visual, textual or even in-memory).

1.13.2 How to add a new representation?

A new one can be defined by contributing to the fr.kazejiyu.ekumi.ide.project_customization ex-
tension point.

It requires a contribution to the representations attribute.

1.13.3 How to integrate the new representation within the IDE?

The representation is automatically proposed to the user in the New Workflow Project wizard as soon as the new
extension is completed.

20 Chapter 1. Table of Contents

https://www.vogella.com/tutorials/EclipseExtensionPoint/article.html

EKumi Documentation

1.14 Share an Activity

Important: This section requires some knowledge about Eclipse Extension Points.

Todo: Explain usage of the categories extension point.

1.15 Build a workflow

1.15.1 Create an activity

An activity is a single unit of process that takes inputs and produces outputs. The Activity interface defines the
exact behavior of an activity.

In order to create a new activity, the simplest way is to create a class that extends
AbstractActivityWithStateManagement. This abstract class hides all the complexity related to
state, inputs and outputs management as well as error handling. It only requires the sub-class to implement the
doRun(Context) method, which is then called each time the activity is executed.

The following example shows a simple HelloWorld activity:

1 import fr.kazejiyu.ekumi.core.workflow.Context;
2 import fr.kazejiyu.ekumi.core.workflow.impl.AbstractActivityWithStateManagement;
3

4 /**
5 * An activity that prints "Hello World!" when run.
6 */
7 public class HelloWorld extends AbstractActivityWithStateManagement {
8

9 @Override
10 public void doRun(Context context) {
11 System.out.println("Hello World!");
12 }
13

14 }

About the execution context

As shown in the example above, the doRun method takes a Context instance as parameter. This instance represents
the context of the execution and can be used, among other things, to:

• set/get global variables

• cancel the execution

The following activity prints different sentence depending on whether the execution has been cancelled:

1 import fr.kazejiyu.ekumi.core.workflow.Context;
2 import fr.kazejiyu.ekumi.core.workflow.impl.AbstractActivityWithStateManagement;
3

4 /**
(continues on next page)

1.14. Share an Activity 21

https://www.vogella.com/tutorials/EclipseExtensionPoint/article.html

EKumi Documentation

(continued from previous page)

5 * An activity that, when run, prints:
6 * - "Cancelled" if the execution has been cancelled
7 * - "Succeeded" otherwise
8 */
9 public class HelloWorld extends AbstractActivityWithStateManagement {

10

11 @Override
12 public void doRun(Context context) {
13 if (context.execution().isCancelled()) {
14 System.out.println("Cancelled");
15 }
16 else {
17 System.out.pritnln("Succeeded");
18 }
19 }
20

21 }

Provide inputs and outputs

An activity’s inputs and outputs can be accessed through the inputs and outputs methods.

The following example shows how to create an AplusB activity that:

• has two inputs called a and b of type double

• has one output called c of type double

• set c to the value of a + b

1 import fr.kazejiyu.ekumi.core.workflow.Context;
2 import fr.kazejiyu.ekumi.core.workflow.impl.AbstractActivityWithStateManagement;
3 import fr.kazejiyu.ekumi.datatypes.DoubleType;
4

5 /**
6 * An activity that computes its outputs 'c' from the addition of its two inputs 'a'

→˓and 'b'.
7 */
8 public class AplusB extends AbstractActivityWithStateManagement {
9

10 public AplusB(String id) {
11 super(id, "a + b = c");
12

13 inputs().create("a", new DoubleType());
14 inputs().create("b", new DoubleType());
15 outputs().create("c", new DoubleType());
16 }
17

18 @Override
19 protected void doRun(Context context) throws Exception {
20 double a = (double) input("a").value();
21 double b = (double) input("b").value();
22

23 output("c").set(a + b);
24 }
25

26 }

22 Chapter 1. Table of Contents

EKumi Documentation

Inputs and outputs can also be assigned to fields for more convenience:

1 import fr.kazejiyu.ekumi.core.workflow.Context;
2 import fr.kazejiyu.ekumi.core.workflow.Input;
3 import fr.kazejiyu.ekumi.core.workflow.Output;
4 import fr.kazejiyu.ekumi.core.workflow.impl.AbstractActivityWithStateManagement;
5 import fr.kazejiyu.ekumi.datatypes.DoubleType;
6

7 public class AplusB extends AbstractActivityWithStateManagement {
8

9 private Input a;
10 private Input b;
11 private Output c;
12

13 public AplusB(String id) {
14 super(id, "AplusB");
15

16 a = inputs().create("A", new DoubleType());
17 b = inputs().create("B", new DoubleType());
18 c = outputs().create("C", new DoubleType());
19 }
20

21 @Override
22 protected void doRun(Context context) throws Exception {
23 double a = (double) this.a.value();
24 double b = (double) this.b.value();
25

26 c.set(a + b);
27 }
28

29 }

From lambda expressions

Alternatively, the Activity interface provides factory methods allowing to creates activities from lambda methods:

1 import fr.kazejiyu.ekumi.core.workflow.Activity;
2

3 public class Main {
4

5 public static void main(String[] args) {
6 Activity sayHello = Activity.of(() -> System.out.println("Hello!");
7 Activity sayIfCancelled = Activity.of(context -> System.out.println(context.

→˓execution().isCancelled());
8 }
9

10 }

1.15.2 Bind activities

Configure execution order

The execution order of two activities can be specified through a predecessor/successor relationship. A predecessor is
always executed before its successor.

This relationship can be created via the precede and succeed methods:

1.15. Build a workflow 23

EKumi Documentation

1 import fr.kazejiyu.ekumi.core.workflow.Activity;
2

3 public class Main {
4

5 public static void main(String[] args) {
6 Activity first = Activity.of(() -> System.out.println("First");
7 Activity second = Activity.of(() -> System.out.println("second");
8

9 // 'first' will be executed before 'second'
10 first.precede(second);
11

12 // Can also be written this way:
13 second.succeed(first);
14 }
15

16 }

Bind outputs to inputs

Outputs and inputs must be connected in order to share data between activities. An input can be connected to another
data by calling the Input.bind(Data) method.

1 import fr.kazejiyu.ekumi.core.workflow.Activity;
2

3 public class Main {
4

5 public static void main(String[] args) {
6 Activity add1 = new AplusB("add1");
7 Activity add2 = new AplusB("add2");
8

9 // At runtime, the value of add2's 'b' input
10 // will be set to the value of add1's 'c' output
11 add2.input("b").bind(add1.output("c"));
12 }
13

14 }

1.15.3 Create a sequence of activities

Usually successors and predecessors must be executed sequentially. A Sequence is a composite activity that owns a
root activity and which, when run, executes its root activity then all its successors and the successors of the successors
and so on.

One can be created as follows:

1 import fr.kazejiyu.ekumi.core.workflow.Activity;
2 import fr.kazejiyu.ekumi.core.workflow.Sequence;
3 import fr.kazejiyu.ekumi.core.workflow.impl.BasicSequence;
4

5 public class Main {
6

7 public static void main(String[] args) {
8 Activity print1 = new Print("print1", "1");
9 Activity print2 = new Print("print2", "2");

(continues on next page)

24 Chapter 1. Table of Contents

EKumi Documentation

(continued from previous page)

10

11 // Create a predecessor/successor relationship,
12 // Thus ensuring the sequence will execute print1 then print2
13 print1.precede(print2);
14

15 Sequence print1Then2 = new BasicSequence("id", "Print 1 then 2", print1);
16 }
17

18 }

1.15.4 Create parallel activities

A Parallel Split is a composite activity that executes its own activities concurrently.

Once can be created as follows:

1 import fr.kazejiyu.ekumi.core.workflow.Activity;
2 import fr.kazejiyu.ekumi.core.workflow.ParallelSplit;
3 import fr.kazejiyu.ekumi.core.workflow.impl.BasicParallelSplit;
4

5 public class Main {
6

7 public static void main(String[] args) {
8 List<Activity> concurrentActivities = new ArrayList<>();
9 for (int i = 0 ; i < 4; ++i) {

10 Activity concurrentActivity = Activity.of(() -> System.out.println("I
→˓run concurrently");

11 concurrentActivities.add(concurrentActivity);
12 }
13 ParallelSplit split = new BasicParallelSplit("id", "Run branches in parallel

→˓", concurrentActivities);
14 }
15

16 }

1.15.5 Create loop of activities

A Structured Loop is a composite activity that executes another activity until a specified pre or post condition is
verified.

One can be created as follows:

1 import fr.kazejiyu.ekumi.core.workflow.Activity;
2 import fr.kazejiyu.ekumi.core.workflow.Condition;
3 import fr.kazejiyu.ekumi.core.workflow.StructuredLoop;
4 import fr.kazejiyu.ekumi.core.workflow.impl.BasicStructuredLoop;
5

6 public class Main {
7

8 public static void main(String[] args) {
9 Condition preCondition = null; // the loop has no pre-condition

10 Condition postCondition = Condition.of(() -> true); // the loop will end
→˓after the first execution

11

(continues on next page)

1.15. Build a workflow 25

EKumi Documentation

(continued from previous page)

12 Activity greet = Activity.of(() -> System.out.println("Hello"));
13

14 StructuredLoop loop = new BasicStructuredLoop("id", "name", greet,
→˓preCondition, postCondition);

15 }
16

17 }

1.16 Execute a Workflow

1.16.1 Launch a background execution

An Execution instance is required to execute properly an activity.

EKumi provides a JobsExecution class that can be used to execute activities in background, relying on Eclipse
Jobs API.

The following code shows how to use it:

1 import fr.kazejiyu.ekumi.core.workflow.Activity;
2 import fr.kazejiyu.ekumi.core.workflow.Execution;
3 import fr.kazejiyu.ekumi.core.workflow.impl.JobsExecution;
4

5 public class Main {
6

7 public static void main(String[] args) {
8 Activity print1 = new Print("print1", "1");
9 Activity print2 = new Print("print2", "2");

10

11 // Create a predecessor/successor relationship,
12 // Thus ensuring the sequence will execute print1 then print2
13 print1.precede(print2);
14

15 Sequence print1Then2 = new BasicSequence("id", "Print 1 then 2", print1);
16

17 Execution execution = new JobsExecution(print1Then2);
18

19 // Launches the execution in background
20 execution.start();
21

22 // Wait for the execution to end
23 execution.join();
24 }
25

26 }

1.16.2 Listen for events

Callbacks can be add to the execution in order to react when the workflow changes. This can for instance used to
persist the workflow or to update an UI.

The following code shows how to print a message each time a new activity starts:

26 Chapter 1. Table of Contents

EKumi Documentation

1 import fr.kazejiyu.ekumi.core.workflow.Activity;
2 import fr.kazejiyu.ekumi.core.workflow.Execution;
3 import fr.kazejiyu.ekumi.core.workflow.impl.JobsExecution;
4

5 public class Main {
6

7 public static void main(String[] args) {
8 Activity workflow = ...
9 Execution execution = new JobsExecution(workflow);

10

11 // Register a callback
12 execution.context()
13 .events()
14 .onActivityStarted(activity -> System.out.println(activity.name() +

→˓" starts"));
15

16 // Launches the execution in background
17 execution.start();
18

19 // Wait for the execution to end
20 execution.join();
21 }
22

23 }

1.16. Execute a Workflow 27

	Table of Contents
	Main Concepts
	Install EKumi
	Create a new Workflow project
	Design an activity
	Execute an activity
	Good Practices
	EKumi Default Representation
	Java
	Monitor Executions
	Add a new Scripting Language
	Add a new Data Type
	Add a new Specification
	Add a new Representation
	Share an Activity
	Build a workflow
	Execute a Workflow

